Site icon ITChronicles

Machine Learning Mobile Apps

Machine Learning Mobile Apps

Machine Learning Mobile Apps: A Primer

Learning is a universal skill possessed by every creature on this planet. Machines can also learn by recognizing data patterns and applying specific rules (algorithms) to similar situations. This process is known as Machine learning. Machine learning is a subset of Artificial Intelligence (AI), which is human intelligence exhibited by machines. The machine learning process of training a computer contains the following constituent steps:

Benefits of Machine Learning Mobile Apps

AI and machine learning have disrupted many industries. Machine learning mobile apps, in particular, are in wide use today. Algorithms in machine-learning apps can scan user data and quickly infer preferences, behavior, pain points, constraints, likes, and dislikes. This data is used for customer segmentation and targeting with specific features and offers. Hence, personalization is undoubtedly the most significant impact of mobile machine learning. 

Apps that use machine learning also make use of intelligent automation to infuse efficiency and productivity in businesses. For example, many companies now run their chat support using chatbots. Chatbots are pre-programmed to be interactive and answer common support questions. Where the chatbot cannot provide an answer, the query is sent to a real human. These Machine Learning apps or ML apps have made it possible for companies to offer round-the-clock customer service. Overall, they have led to massive improvements in customer service metrics. 

How to Get Started with Machine Learning Mobile Apps

If you’re a business trying to figure out how to implement machine-learning apps for your business, it can seem daunting at first. Below, we provide you with the key aspects you should consider when thinking about getting started with machine learning mobile apps. 

Are You Machine Learning Ready?

You should start by considering whether you have all the prerequisites to begin building an ML app. Consider the following:

Choosing Your Machine Learning Model

Machine learning models can solve a variety of tasks depending on your needs. The model you choose will depend on whether your data is structured or unstructured. 

Structured data exists in a fixed field within a file or a record. The format is typically rows and columns. It is usually stored in a relational database and consists of numbers or text. 

Unstructured data is everything else. It is stored in its native format and is not predefined. Most enterprise data consists of unstructured data. Think text, video and images, social media activity, mobile data, email messages, business apps, scientific data, surveillance footage, sensor data, and so on. 

Some data overlap these two main categories and are defined as semi-structured or quasi-structured. 

Below are the recommended ML models for structured data:

Below are the recommended ML models for unstructured data:

Choose the Approach That Best Fits Your Requirements

The approach you choose depends on your expertise, dataset, and budget. The illustration below represents the spectrum that guides your approach. 

On the extreme left, you have application developers who want to use production-ready machine learning models. There are hundreds of ready-to-use open-source machine learning software libraries. This approach is ideal when you have low machine learning expertise and limited training data.

In the middle of the spectrum, you have data scientists who want to easily train sophisticated ML models on their data to drive both real-time and batch predictions. 

On the extreme right, you have machine learning experts who want to train their models. This approach is ideal where you have high machine learning expertise and a large data training set. 

Choose the Best Framework to Run Your Model

Machine learning runs on complex algorithms that prove to be a steep learning curve unless you are a data scientist or machine learning expert. Machine learning frameworks simplify the development of machine learning mobile apps. Essentially, the framework allows you to build the model without learning how the underlying algorithms work. Different frameworks are geared for different purposes. Below are examples of machine learning frameworks to run your model.

Model Constraints

One of the constraints to building a machine learning mobile app is the size. To retain a great user experience, the app has to be nimble, which means it must have a reasonable small size to run smoothly on the majority of devices. 

The other constraints that developers must deal with are the battery life of mobile devices. Resource hungry machine learning mobile apps can quickly drain batteries. 

Examples of Successful Machine Learning Mobile Apps

Artificial intelligence and machine learning have given the world stunning mobile applications. This has led to huge investor interest and a healthy flow of venture capital funding. Investments in machine learning are expected to reach $58 billion in 2021 and market growth at an annual rate of 44.06%. Tangible results fuel this growth. Below are examples of some of the most successful machine learning mobile apps. 

The Future of Machine Learning Mobile Apps

The next generation of machine learning mobile applications will be smarter and more powerful—some of the areas where we are bound to see interesting developments. One area is that of news applications. The spread of fake news and misinformation has led people not to trust conventional news sources, blogs, and social media. New mobile applications are being developed that will use machine learning to distinguish fake news and bury it in search results or notify users. 

Exit mobile version